web statistics

The Steady-Flow Process

thermodynamics_engrzThe terms steady and uniform are used frequently in engineering, and thus it is important to have a clear understanding of their meanings. The term steady implies no change with time. The opposite of steady is unsteady, or transient. The term uniform, however, implies no change with location over a specified region. These meanings are consistent with their everyday use (steady girlfriend, uniform properties, etc.).

A large number of engineering devices operate for long periods of time under the same conditions, and they are classified as steady-flow devices. Processes involving such devices can be represented reasonably well by a somewhat idealized process, called the steady-flow process, which can be defined as a process during which a fluid flows through a control volume steadily (Fig. 1–29). That is, the fluid properties can change from point to point within the control volume, but at any fixed point they remain the same during the entire process. Therefore, the volume V, the mass m, and the total energy content E of the control volume remain constant during a steady-flow process (Fig. 1–30).
thermodynamics_engrzSteady-flow conditions can be closely  approximated by devices that are intended for continuous operation such as turbines, pumps, boilers, condensers, and heat exchangers or power plants or refrigeration systems. Some cyclic devices, such as reciprocating engines or compressors, do not satisfy any of the conditions stated above since the flow at the inlets and the exits will be pulsating and not steady. However, the fluid properties vary with time in a periodic manner, and the flow through these devices can still be analyzed as a steady-flow process by using time-averaged values for the properties.

Reference: Thermodynamics – An Engineering Approach
5th Edition
by: Yunus A. Cengel and Michale A. Boles

Leave a Reply

Your email address will not be published. Required fields are marked *